28 research outputs found

    Refraction and Shielding of Noise in Non-Axisymmetric Jets

    Get PDF
    This paper examines the shielding effect of the mean flow and refraction of sound in non-axisymmetric jets. A general three-dimensional ray-acoustic approach is applied. The methodology is independent of the exit geometry and may account for jet spreading and transverse as well as streamwise flow gradients. We assume that noise is dominated by small-scale turbulence. The source correlation terms, as described by the acoustic analogy approach, are simplified and a model is proposed that relates the source strength to 7/2 power of turbulence kinetic energy. Local characteristics of the source such as its strength, time- or length-scale, convection velocity and characteristic frequency are inferred from the mean flow considerations. Compressible Navier Stokes equations are solved with a k-e turbulence model. Numerical predictions are presented for a Mach 1.5, aspect ratio 2:1 elliptic jet. The predicted sound pressure level directivity demonstrates favorable agreement with reported data, indicating a relative quiet zone on the side of the major axis of the elliptic jet

    Green's Function Applicable to Turbofan Exhaust Noise in Jets with an External Center-Body

    Get PDF
    The problem of propagation of sound across the shear layer in a turbofan jet exhaust with an external center-body is discussed. The wave equation of interest is the compressible Rayleigh equation. Two forms of the equation are considered, and the Green's function solutions, subject to appropriate surface conditions on the center-body and flight condition in the ambient, are presented. Directivity studies in a heated exhaust at temperature ratio of 2.0 and Mach number 0.90 indicate that a rigid center-body tends to increase the sound propagation at forward angles relative to an exhaust without a center-body, while application of suitable surface liner may significantly reduce this enhancement

    Noise Generation in Hot Jets

    Get PDF
    A prediction method based on the generalized acoustic analogy is presented, and used to evaluate aerodynamic noise radiated from high speed hot jets. The set of Euler equations are split into their respective non-radiating and residual components. Under certain conditions, the residual equations are rearranged to form a wave equation. This equation consists of a third-order wave operator, plus a number of nonlinear terms that are identified with the equivalent sources of sound and their statistical characteristics are modeled. A specialized RANS solver provides the base flow as well as turbulence quantities and temperature fluctuations that determine the source strength. The main objective here is to evaluate the relative contribution from various source elements to the far-field spectra and to show the significance of temperature fluctuations as a source of aerodynamic noise in hot jets

    Development of Jet Noise Power Spectral Laws

    Get PDF
    High-quality jet noise spectral data measured at the Aero-Acoustic Propulsion Laboratory (AAPL) at NASA Glenn is used to develop jet noise scaling laws. A FORTRAN algorithm was written that provides detailed spectral prediction of component jet noise at user-specified conditions. The model generates quick estimates of the jet mixing noise and the broadband shock-associated noise (BBSN) in single-stream, axis-symmetric jets within a wide range of nozzle operating conditions. Shock noise is emitted when supersonic jets exit a nozzle at imperfectly expanded conditions. A successful scaling of the BBSN allows for this noise component to be predicted in both convergent and convergent-divergent nozzles. Configurations considered in this study consisted of convergent and convergent- divergent nozzles. Velocity exponents for the jet mixing noise were evaluated as a function of observer angle and jet temperature. Similar intensity laws were developed for the broadband shock-associated noise in supersonic jets. A computer program called sJet was developed that provides a quick estimate of component noise in single-stream jets at a wide range of operating conditions. A number of features have been incorporated into the data bank and subsequent scaling in order to improve jet noise predictions. Measurements have been converted to a lossless format. Set points have been carefully selected to minimize the instability-related noise at small aft angles. Regression parameters have been scrutinized for error bounds at each angle. Screech-related amplification noise has been kept to a minimum to ensure that the velocity exponents for the jet mixing noise remain free of amplifications. A shock-noise-intensity scaling has been developed independent of the nozzle design point. The computer program provides detailed narrow-band spectral predictions for component noise (mixing noise and shock associated noise), as well as the total noise. Although the methodology is confined to single streams, efforts are underway to generate a data bank and algorithm applicable to dual-stream jets. Shock-associated noise in high-powered jets such as military aircraft can benefit from these predictions

    Jet Noise Scaling in Dual Stream Nozzles

    Get PDF
    Power spectral laws in dual stream jets are studied by considering such flows a superposition of appropriate single-stream coaxial jets. Noise generation in each mixing region is modeled using spectral power laws developed earlier for single stream jets as a function of jet temperature and observer angle. Similarity arguments indicate that jet noise in dual stream nozzles may be considered as a composite of four single stream jets representing primary/secondary, secondary/ambient, transition, and fully mixed zones. Frequency filter are designed to highlight spectral contribution from each jet. Predictions are provided at an area ratio of 2.0--bypass ratio from 0.80 to 3.40, and are compared with measurements within a wide range of velocity and temperature ratios. These models suggest that the low frequency noise in unheated jets is dominated by the fully mixed region at all velocity ratios, while the high frequency noise is dominated by the secondary when the velocity ratio is larger than 0.80. Transition and fully mixed jets equally dominate the low frequency noise in heated jets. At velocity ratios less than 0.50, the high frequency noise from primary/bypass becomes a significant contributing factor similar to that in the secondary/ambient jet

    Development of Jet Noise Power Spectral Laws Using SHJAR Data

    Get PDF
    High quality jet noise spectral data measured at the Aeroacoustic Propulsion Laboratory at the NASA Glenn Research Center is used to examine a number of jet noise scaling laws. Configurations considered in the present study consist of convergent and convergent-divergent axisymmetric nozzles. Following the work of Viswanathan, velocity power factors are estimated using a least squares fit on spectral power density as a function of jet temperature and observer angle. The regression parameters are scrutinized for their uncertainty within the desired confidence margins. As an immediate application of the velocity power laws, spectral density in supersonic jets are decomposed into their respective components attributed to the jet mixing noise and broadband shock associated noise. Subsequent application of the least squares method on the shock power intensity shows that the latter also scales with some power of the shock parameter. A modified shock parameter is defined in order to reduce the dependency of the regression factors on the nozzle design point within the uncertainty margins of the least squares method

    Computation of supersonic jet mixing noise for an axisymmetric CD nozzle using k-epsilon turbulence model

    Get PDF
    The turbulent mixing noise of a supersonic jet is calculated for a round convergent-divergent nozzle at the design pressure ratio. Aerodynamic computations are performed using the PARC code with a k-epsilon turbulence model. Lighthill's acoustic analogy combined with Ribner's assumption is adopted. The acoustics solution is based upon the methodology followed by GE in the MGB code. The source correlation function is expressed as a linear combination of second-order tensors. Assuming separable second-order correlations and incorporating Batchelor's isotropic turbulence model, the source term was calculated from the kinetic energy of turbulence. A Gaussian distribution for the time-delay of correlation was introduced. The computational fluid dynamics (CFD) solution was used to obtain the source strength as well as the characteristic time-delay of correlation. The effect of sound/flow interaction was incorporated using the high frequency asymptotic solution to Lilley's equation for axisymmetric geometries. Acoustic results include sound pressure level directivity and spectra at different polar angles. The aerodynamic and acoustic results demonstrate favorable agreement with experimental data

    An Empirical Temperature Variance Source Model in Heated Jets

    Get PDF
    An acoustic analogy approach is implemented that models the sources of jet noise in heated jets. The equivalent sources of turbulent mixing noise are recognized as the differences between the fluctuating and Favre-averaged Reynolds stresses and enthalpy fluxes. While in a conventional acoustic analogy only Reynolds stress components are scrutinized for their noise generation properties, it is now accepted that a comprehensive source model should include the additional entropy source term. Following Goldstein s generalized acoustic analogy, the set of Euler equations are divided into two sets of equations that govern a non-radiating base flow plus its residual components. When the base flow is considered as a locally parallel mean flow, the residual equations may be rearranged to form an inhomogeneous third-order wave equation. A general solution is written subsequently using a Green s function method while all non-linear terms are treated as the equivalent sources of aerodynamic sound and are modeled accordingly. In a previous study, a specialized Reynolds-averaged Navier-Stokes (RANS) solver was implemented to compute the variance of thermal fluctuations that determine the enthalpy flux source strength. The main objective here is to present an empirical model capable of providing a reasonable estimate of the stagnation temperature variance in a jet. Such a model is parameterized as a function of the mean stagnation temperature gradient in the jet, and is evaluated using commonly available RANS solvers. The ensuing thermal source distribution is compared with measurements as well as computational result from a dedicated RANS solver that employs an enthalpy variance and dissipation rate model. Turbulent mixing noise predictions are presented for a wide range of jet temperature ratios from 1.0 to 3.20

    Progress Toward Improving Jet Noise Predictions in Hot Jets

    Get PDF
    An acoustic analogy methodology for improving noise predictions in hot round jets is presented. Past approaches have often neglected the impact of temperature fluctuations on the predicted sound spectral density, which could be significant for heated jets, and this has yielded noticeable acoustic under-predictions in such cases. The governing acoustic equations adopted here are a set of linearized, inhomogeneous Euler equations. These equations are combined into a single third order linear wave operator when the base flow is considered as a locally parallel mean flow. The remaining second-order fluctuations are regarded as the equivalent sources of sound and are modeled. It is shown that the hot jet effect may be introduced primarily through a fluctuating velocity/enthalpy term. Modeling this additional source requires specialized inputs from a RANS-based flowfield simulation. The information is supplied using an extension to a baseline two equation turbulence model that predicts total enthalpy variance in addition to the standard parameters. Preliminary application of this model to a series of unheated and heated subsonic jets shows significant improvement in the acoustic predictions at the 90 degree observer angle

    A survey of the broadband shock associated noise prediction methods

    Get PDF
    Several different prediction methods to estimate the broadband shock associated noise of a supersonic jet are introduced and compared with experimental data at various test conditions. The nozzle geometries considered for comparison include a convergent and a convergent-divergent nozzle, both axisymmetric. Capabilities and limitations of prediction methods in incorporating the two nozzle geometries, flight effect, and temperature effect are discussed. Predicted noise field shows the best agreement for a convergent nozzle geometry under static conditions. Predicted results for nozzles in flight show larger discrepancies from data and more dependable flight data are required for further comparison. Qualitative effects of jet temperature, as observed in experiment, are reproduced in predicted results
    corecore